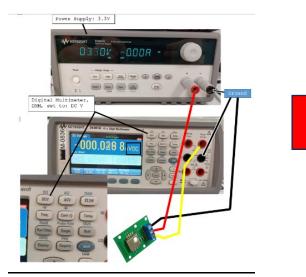

AX224068 QUICK START

AX224068 Test Board

BILL OF MATERIAL

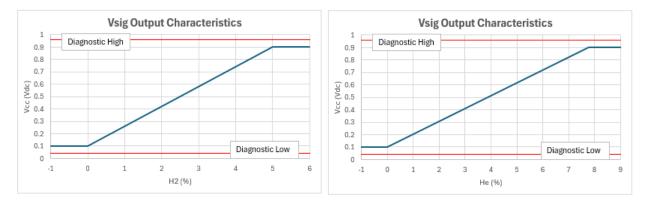

ITEM CODE	DESCRIPTION	QUANTITY	UOM
AX224021 PCBA0029 AX221126 CC-007 C-060 I-267 I-268 I-269 EE-016 TBD TBD TBD	TR H2 Sensor PV1 Generic Version Thermal Runaway Mini Breakout Board Terminal Block OSTTC032162 SN95/AG5 Solder Pot Tin SAC 305 No Clean HF Solder .040 Dia. 20Awg 7/38 Bare Copper Wire TXL Black 20Awg 7/38 Bare Copper Wire TXL Red 20Awg 7/38 Bare Copper Wire TXL Red 20Awg 7/38 Bare Copper Wire TXL Yello 6 x 84 mil antistatic zipper 0.1uF 0603 General Capacitor 1uF 0603 General Capacitor Twist Tie	1 1 0.001 0.001 6.5 6.5	EA EA EA GM FT FT FT EA EA EA EA
100	1.1200 110	-	2

Amphenol Proprietary Information

The information contained in this document is Amphenol proprietary information and is disclosed in confidence. It is the property of Amphenol and shall not be used, disclosed to others or reproduced without the express written consent of Amphenol, including, but without limitation, it is not to be used in the creation, manufacture, development, or derivation of any repairs, modifications, spare parts, designs, or configuration changes. If consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction in whole or in part.

Laboratory Single Device Test Setup

Using a power supply, and digital multimeter, power the part with 3.3 Volts as pictured.



This sensor is not revers or over voltage protected. Be sure of setup before applying

Current will fluctuate between ~4mA and 20mA, and output voltage will be between ~0.33V to 0.45V depending on atmosphere and supply voltage.

Vsig Output (Yellow)

AX224021 is calibrated from 0% to 5% hydrogen concentration. Helium surrogate can be used for testing purposes and is characterized based on the relationship below.

Output Relationship

Linearized relationship between % concentration (H), supply voltage (V_{cc}) and output (V_{sig}) is shows below:

$$V_{cc} * (a * H + b) = V_{sig}$$

The coefficients a, b for calculating the He and H_2 concentration are shown in table 1.

AX224068 QUICK START

Parameter	Value	Unit			
Vsig Max	<i>V_{cc}</i> x 0.9	Volts			
Vsig Min	<i>V_{cc}</i> x 0.1	Volts			
Coefficient a, b for Helium concentration (%)					
a (He)	0.05	1/%			
b (He)	0.1	-			
Coefficient a, b for Hydrogen concentration (%)					
a (H2)	0.16	1/%			
b (H2)	0.1	-			

Table 1: Coefficients a, b for calculating He and h2 concentration

Any values calculated to be above $V_{cc} \ge 0.9$ or below $V_{cc} \ge 0.1$ are considered saturated and will be limited to these values.

Example

Calculating %H ₂ Concentration					
Example 1		Example 2			
V _{out}	2 V	V _{out}	1.02 V		
V _{cc}	3.3 V	V_{cc}	3.3 V		
а	0.16 1/%	а	0.16 1/%		
b	0.1	b	0.1		
H ₂ Conc.	3.1628 %	H ₂ Conc.	1.3068 %		

Calculating %He Concentration						
Example 1		Example 2				
V _{out}	2 V	V _{out}	1.02 V			
V_{cc}	3.3 V	V_{cc}	3.3 V			
а	0.10296 1/%	а	0.10296 1/%			
b	0.1	b	0.1			
He Conc.	4.9149 %	He Conc.	2.0307 %			